Some scientists are thinking about what human space travelers will look like in the future. They might be extra-small and radiation-proof.
At the International Astronautical Congress last September, in Guadalajara, Mexico, Elon Musk convinced many die-hard space engineers he could get a fleet of private rockets filled with thousands of people to Mars.
Musk’s speech was long on orbits, flight plans, and fuel costs. But it was short on how any of those colonists would survive. In fact, the Mars journey would likely be a dead end. Bathed in radiation and with nothing growing on it, the Red Planet is basically a graveyard.
Recently, a few scientists have started to explore whether we might be able to do a little better if we created new types of humans more fit for the travails of space travel. That’s right: genetically modified astronauts.
Let’s be clear. No one is trying to grow an astronaut in a bubbling vat somewhere. But some far-out ideas once relegated to science fiction and TED Talks have recently started to take concrete form. Experiments have begun to alter human cells in the lab. Can they be made radiation-proof? Can they be rejiggered to produce their own vitamins and amino acids?
One person looking at the idea is Christopher Mason, a member of the Department of Physiology and Biophysics at Weill Cornell Medicine. In 2011, Mason came up with what he called a “ 500-year plan ” to get humans off Earth. In it, genetic modification plays a big role. “I think we have to consider it for people that we send to other planets,” he says. “We don’t know if it’s a slight nudge to existing gene expression, or a whole new chromosome, or finally a complete rewriting of the genetic code.”
Mason says there’s a decade or two of work left just to find out what effect space travel has on your genes, and which ones might be okay to change and which should be on a “do not disturb” list. His lab participates in NASA’s Twins Study, which is tracking physiological changes to an astronaut who was sent to the International Space Station for a year while his twin brother stayed on Earth. So far, that’s about as close as NASA has gotten to the subject of GM astronauts—one that still hasn’t been broached in any official agency document.
Yet Mason says his lab is ready to take an initial step. Space is full of rays and fast-moving particles that damage DNA. So he’s working on radiation-proofing human cells. His students are taking cells and adding extra copies of p53, a gene involved in preventing cancer that’s known as the “protector of the genome.” Elephants have many extra copies of p53 and hardly ever get cancer, so maybe astronauts should have them too. Mason says he recently submitted a proposal to NASA to send the modified cells to the space station. “There is not a genetic engineering astronaut’s consortium or anything, but maybe we should start one,” he says.
Gattaca
All this has become easier to think about because it has become easier to do. In 2015 we published an article, “ Engineering the Perfect Baby ,” about the fact that gene editing, especially with a technology called CRISPR, had suddenly made it possible to easily change the genes in a human embryo. For the first time, we faced the real possibility of genetically modified people.
Since then, scientists in China and Europe have begun editing embryos to see how it works. Would it be ethical to then actually make a gene-fixed baby? The U. S. National Academy of Sciences this year said yes, heritable genetic changes could be considered to avoid disease, but only in a few situations and under very strict supervision.