Home United States USA — IT Here’s how that epic black hole image was captured

Here’s how that epic black hole image was captured

236
0
SHARE

The first ever black hole photo may be a milestone in science, but it turns out the telescope array used to capture it is just as groundbreaking. Astronomers
The first ever black hole photo may be a milestone in science, but it turns out the telescope array used to capture it is just as groundbreaking. Astronomers released the eerie image of the black hole at the center of galaxy Messier 87 (M87) today, but it was the culmination of several years of work spanning facilities across the globe.
Messier 87 is close, at least in astronomical terms. The elliptical galaxy is approximately 55 million light years from Earth, in the Virgo cluster. It’s actually one of the most massive galaxies in the local universe, and was discovered by – and named after – Charles Messier all the way back in 1781.
While the galaxy may have been spotted centuries ago, the supermassive black hole at its center remained a source of several mysteries. For example, NASA has previously spotted a jet of high-energy particles spurting out from the center of M87, moving at close to the speed of light. It extends more than a thousand light years. Meanwhile, the Hubble space telescope spotted a strange blob of matter in the jet, known as HST-1, which brightens and dims in ways that have left scientists confused.
Part of the problem when it comes to studying black holes is what makes them so intriguing in the first place: they’re so voracious, even light can’t escape. The accepted boundary of a black hole is the event horizon, the point at which light can’t resist the gravitational pull. With no energies escaping, it’s hard to image the black hole.
The solution is to look, not for the black hole itself, but for the shadow it casts. Beyond the event horizon, the huge forces involved will super-heat surrounding gases and other materials, as well as warping space-time itself. If – like M87 is – the black hole is in the middle of a brighter region of glowing gas, the gravitational bending causes a shadow to be made.

Continue reading...