Home United States USA — IT Huawei Announces Mate 40 Series: Powered by 15.3bn Transistors 5nm Kirin 9000

Huawei Announces Mate 40 Series: Powered by 15.3bn Transistors 5nm Kirin 9000

262
0
SHARE

Today Huawei took the stage to unveil the new Mate 40 series of devices. In the form of the Mate 40, Mate 40 Pro and …
Today Huawei took the stage to unveil the new Mate 40 series of devices. In the form of the Mate 40, Mate 40 Pro and the Mate 40 Pro+, the new phones represent the company’s leading edge in terms of technology, mostly enabled by the new Kirin 9000 chipset which is manufactured on a new 5nm manufacturing node, promising great leaps in performance and efficiency. The new phones also feature an updated design with a different camera layout, differentiated display design and improved speakers and charging features. The new Kirin 9000 is are the core of the discussion – and it’s also Huawei’s biggest problem as the new silicon is no longer under production since September due to US sanctions on the company, representing a much more substantial threat than the already existing limitations on the company’s products, such as not being able to ship with Google Mobile Services. As mentioned, the biggest news today was the official unveiling of the new HiSilicon Kirin 9000 SoC. Manufactured on TSMC’s brand new 5nm process node, the Kirin 9000 represents the second and likely only other chip design after Apple’s A14 to ship in 2020. Huawei had made a lot of parallels to Apple’s and Android SoC competitors such as Qualcomm – focusing on some important milestones that the competition hasn’t yet been able to achieve at the high-end segment, such as integrating the 5G modem within the SoC instead of relying on an external chip. In this regard, Huawei calls the Kirin 9000 the first and only 5nm 5G SoC. The chip is also of substantial complexity, as Huawei discloses if features 15.3 billion transistors,30% more than the recently announced Apple A14 which “only” features 11.8bn. An explanation for the vastly larger die size of course is the inclusion of an on-die modem which is currently lacking in other SoCs from the competition (due to various design & cost reasons). However, the modem isn’t the only IP block that bloats up the die size, as HiSilicon opted for a quite gigantic GPU configuration: Featuring a Mali-G78MP24, we’re actually seeing the chip designers rely on the maximum configuration of the G78 IP that Arm offers. HiSilicon had previously skipped the Mali-G77 generation which actually had been a large architectural change for Mali GPUs so it’s not exactly comparable, but the previous generation Kirin 990 used an 16-core Mali-G76, which is dwarfed by the new 24-core GPU. A more valid comparison would by the Exynos 990 with its G77MP11 configuration – and here the new Kirin 9000 features essentially 2.2x the cores. Undoubtedly TSMC’s new 5nm node density allows for designers to employ more transistors in the same area, but this new GPU is still quite a freak that comes quite unexpectedly, given the company’s history on focusing on cost, rather than all-out performance. In terms of absolute performance metrics, the Kirin 9000 is quoted at being 52% faster than the Snapdragon 865+, which is a very large leap and should put the SoC and the Mate 40 series near the top positions in terms of performance. We don’t yet know the clock frequencies of the design, but I expect it to be very low given the large number of cores, representing an extreme case of a “wide and slow” configuration. The rest of the SoC also has seen updates, although not quite as large within the competitive landscape. The CPUs have been updated from Cortex-A76 cores to the newer Cortex-A77 IP, and HiSilicon has shifted from a 2+2+4 design to a 1+3+4 design, much like seen in recent generation Qualcomm chips. The new cores clock up to 3.13GHz on the fastest core, which is a slight lead over the Snapdragon 865+. HiSilicon’s product cycle means that it rarely manages to catch Arm’s new CPU IP release cycle, and as we expected doesn’t take advantage of the newer A78 or X1 CPUs that we expect from upcoming Exynos and Snapdragon chipsets in a few months.

Continue reading...