Home United States USA — software Freakishly large graphics cards and super-hot SSDs mean the fundamentals of PC...

Freakishly large graphics cards and super-hot SSDs mean the fundamentals of PC design needs a big change

91
0
SHARE

The ATX standard needs to be revisited.
In my humble opinion, the ATX standard is broken. The PCs we know and love have evolved so much over the last 30 years. Small revisions and additions to the standard aren’t meeting the needs and requirements of a 2024 era PC, to say nothing of the demands of a PC as we move towards—and into the 2030’s.
ATX (Advanced Technology Extended) is a motherboard and power supply configuration specification introduced by Intel in 1995. Its purpose is to define the basic fundamentals of our PCs. If you look at the internals of a PC from the mid 90’s and compare it to one today, the layout is easily recognizable.
At its most basic, ATX exists to ensure compatibility across the PC ecosystem. In theory, any ATX motherboard can be installed into any ATX case with any ATX power supply. The dimensions, mounting points, the shape and location of the I/O panel and the positioning of the expansion slots are key to this.
Over the years the ATX standard has undergone many revisions and expansions. The most well known of these are the addition of the microATX and Mini-ITX standards, though there are others more relevant to workstation and enterprise motherboards. Extended ATX is one we often see in high-end consumer motherboards.
PC power supplies are also required to meet certain specifications. That includes the physical connectors and the requirement to supply various voltages within tolerances. These include the 12V, 5V and 3.3V rails, so that it ensures compatibility with—hopefully—all motherboards. 
The most recent major ATX power supply revision is ATX 3.0, which was released in February of 2022. ATX 3.1 is coming this year. It introduces the 12V-2×6 16-pin connector which can supply 600W of power to the thirstiest graphics cards. It replaces the issue prone 12VHPWR connector, which has not exactly gone well.
There are a multitude of reasons why I believe there’s a need for an ATX replacement. These include the rise of M.2, the physical size and demands of modern graphics cards, cooling requirements, power efficiency, cable management, and the need to prepare for future technologies.
But there are some parts of the standard that are perfectly fine. The positioning of the rear I/O panel and the motherboard mounting points are two features that have stood the test of time.M.2 wasn’t even a twinkle in daddy Intel’s eye 30 years ago
I’ll begin with M.2. I’ve previously outlined the reasons why I think M.2 is a poor solution. It’s got nothing to do with the performance of a speedy NVMe M.2 drive, it’s all to do with the physical, electrical, and cooling demands it places on a modern system. These days, motherboard designs are pretty much dominated by M.2 slots, and there was nothing like them when ATX was introduced in 1995.
Ditching M.2 in favor of an alternative form factor would remove the necessity for expansive motherboard mounted heatsinks, it would free up motherboard PCB space for other components (or make them cheaper), and they require inefficient 3.3V power. 
For some reason, competing cabled standards including U.2 and U.3 connections have never taken off in the consumer space. U.3 includes support for 12V power. Removing 3.3V support would fix one of the inefficiencies of modern ATX power supplies. But, I’ll get to that shortly.
A U.3 drive could incorporate cooling into a 2.5-inch SSD chassis. Such a drive would require the *shock* routing of a cable. But, that could be easily solved by putting the connectors on the rear of the motherboard, which brings me to my next point.Make backside cable connectors mandatory
Mounting all of the motherboard connectors and headers on the rear of the motherboard would be one of the easier changes to mandate. Motherboard manufacturers are already experimenting in this regard, with MSI’s Project Zero and Asus’ BTF concepts being prominent examples.
Rear mounted motherboard connectors improve aesthetics and case airflow. It would also make the system easier to access. M.2 drives are a pain to install, whereas a SATA (or U.3) SSD could be simply and easily mounted and attached with none of the fiddliness of M.

Continue reading...