Home United States USA — IT New scalable, etching-based technique for precise tuning of microdisk lasers

New scalable, etching-based technique for precise tuning of microdisk lasers

176
0
SHARE

Micro- and nanodisk lasers have recently emerged as promising optical sources and probes for various applications in the fields of nanophotonics and biomedicine. Their ability to achieve lasing at a deterministic wavelength and ultra-narrowband precision is critical for several applications in on-chip photonic communications, on-chip bioimaging, biochemical sensing, and quantum photonic information processing. However, the large-scale fabrication of such precise wavelength micro- and nanodisk lasers remains challenging. Current nanofabrication processes introduce randomness in the disk diameter, making it difficult to achieve deterministic wavelengths in laser batches.
Micro- and nanodisk lasers have recently emerged as promising optical sources and probes for various applications in the fields of nanophotonics and biomedicine. Their ability to achieve lasing at a deterministic wavelength and ultra-narrowband precision is critical for several applications in on-chip photonic communications, on-chip bioimaging, biochemical sensing, and quantum photonic information processing. However, the large-scale fabrication of such precise wavelength micro- and nanodisk lasers remains challenging. Current nanofabrication processes introduce randomness in the disk diameter, making it difficult to achieve deterministic wavelengths in laser batches.

Addressing this issue, a team of researchers from Harvard Medical School and Massachusetts General Hospital’s Wellman Center for Photomedicine has developed an innovative photoelectrochemical (PEC) etching-based technique that facilitates precise tuning of the lasing wavelength of microdisk lasers with subnanometric accuracy.

Continue reading...