Online retail is changing in profound ways as consumers change their buying patterns. With the shift to work-from-home and school-at-home changing the way people live, work, and socialize. Retailers are rethinking their sales, marketing, & supply chain practices by moving to data-driven approaches.
The retail experience is certainly changing in the face of the global pandemic. A Rip Van Winkle who might have fallen asleep in January 2020 and woken up in September 2020 would find their retail experience to be a surreal experience with shoppers wearing masks, markings on the floor separating folks from one another by six feet, and plexiglass screens by registers in checkout aisles. The online shopping experience has changed in many ways as well, with some items that had previously been taken for granted such as toilet paper, inflatable pools, and other commodities now being scarce commodities. Online retail is changing in other profound ways as consumers change their buying patterns and behaviors, with the shift to work-from-home and school-at-home changing the way people live, work, and socialize. Retail establishments that had previously counted on big Fourth of July and Labor Day celebrations, back-to-school specials, large social gatherings, and practically the whole travel and hospitality industry have had to throw out their usual sales, marketing, and supply chain practices and rethink their fundamental business strategies. All this is making the focus on data and machine learning even more essential than ever. Previous process and program approaches have been challenged, resulting in organizations realizing the importance of data and data-driven decision-making. At the recent Data for AI 2020 conference, Khalifeh Al Jadda shared deep insights into how The Home Depot is tackling these existential retail issues and provided in-depth insights into the core of the company’s e-commerce systems. On a follow-up AI Today podcast, he shared insights into the changing data science organization and its increasingly strategic role in retail operations. In this article, he shares further insights into how major retailers like The Home Depot are approaching AI and data science. What are some of the challenges retail operations face when it comes to AI adoption? Khalifeh: There are many challenges facing AI adoption in retail. The most important one is building the data science organization with the right talents given the shortage in data science leadership in the job market. Also, the placement of data science is another challenge since retail companies are not technical companies and as such they tend to not have R&D organizations where they can place data science. Sometimes the data science group becomes part of an existing IT org and they try to manage the data science team with the same strategy they use to manage the other IT teams but that is not right. The other challenge they face in adopting AI is the mindset of the business leaders that don’t necessarily believe in automation and machine learning.