Домой United States USA — IT Qualcomm's Snapdragon 855 is over a year behind Apple's A12 Bionic, lacks...

Qualcomm's Snapdragon 855 is over a year behind Apple's A12 Bionic, lacks a premium Android audience

292
0
ПОДЕЛИТЬСЯ

At its Snapdragon Tech Summit, Qualcomm outlined its new 855, a chip it hopes will power the next generation of premium Androids. It addresses silicon work Apple has driven in its Application Processors leading up to the latest A12 Bionic, but it’s less clear who will be building high-end Androids with Qualcomm’s most advanced processor yet, and for how long.
– A + Editorial Qualcomm’s Snapdragon 855 is over a year behind Apple’s A12 Bionic, lacks a premium Android audience
By Daniel Eran Dilger Thursday, December 06,2018,11:11 am PT (02:11 pm ET) At its Snapdragon Tech Summit, Qualcomm outlined its new 855, a chip it hopes will power the next generation of premium Androids. It addresses silicon work Apple has driven in its Application Processors leading up to the latest A12 Bionic, but it’s less clear who will be building high-end Androids with Qualcomm’s most advanced processor yet, and for how long. Qualcomm’s Snapdragon 855 The shrinking list of premium Snapdragon buyers
Attendees listening to Qualcomm’s introduction of the Snapdragon 855 have largely offered positive comments. Ben Bajarin tweeted, «I used to be worried about Qualcomm in the premium chip market. Since most their premium smartphone customers were making their own silicon. However, the 855 looks to be such a significant jump that I think they can maintain, and even gain share back in the premium segment.»
One problem: the premium segment on Android isn’t very big and is slipping downward in terms of price and performance. Samsung flat out told its investors, given the disappointing sales of its flagship Galaxy S9, that it would be concentrating more on selling middle tier phones like its Galaxy J series. Rather than using Qualcomm’s fastest premium chips, these phones use middle-tier Snapdragons or even Samsung’s own Exynos chips.
Additionally, the second largest Android maker, Huawei, recently launched its newest premium phones using its own Kirin chips built by its HISilicon subsidiary. That’s increasingly pushing Qualcomm’s Snapdragon down market as it seeks to find premium phone makers willing to pay for its latest and greatest technology.
And increasingly, Android buyers are not demanding high-end performance and advanced new features but rather low prices. Google’s own Pixel phones use modern Qualcomm Application Processors, albeit paired with proprietary camera silicon to stand out. While they’ve won accolades for still photos, they haven’t sold in commercially significant volumes. And the phone’s performance lags behind Apple’s iPhone.
Google previously built products that failed to sell advanced chips: its Galaxy Nexus helped push Texas Instruments out of the smartphone industry; the failure of the Nexus 7 and Nexus 9 helped drive Nvidia’s Tegra out of mobile processors; and now Pixel is doing nothing to support volume sales of advanced Snapdragons. The question is: who will drive volumes of Qualcomm’s premium chips in a plateauing smartphone market where Apple increasingly attracts the vast majority of the world’s premium buyers? Faster than the network
Qualcomm capitalized on the Snapdragon 855’s connectivity, promoting the potential throughput it delivers with its integrated X24 modem with support for LTE Cat. 20—that’s an astounding 2Gbps, up to twice as fast as Apple’s latest iPhones using Intel’s XMM7560 modems. One problem: there’s aren’t networks that fast.
Qualcomm’s existing X20 modem (used in models of Samsung’s Galaxy Note 9) already claims a theoretical 20 percent performance edge over the 1 Gbps modems in the latest iPhones. But Samsung users aren’t actually hitting anything close to 1.2GB downloads in the real world.
In October tests run by PC Mag, there were only minor differences found between a X20-powered Note 9, Qualcomm’s earlier 1Gbps X16 in a Pixel 2, and the 1Gbps Intel’s XMM7560 in an iPhone XS Max—and that was using lab equipment in simplified, ideal settings.
In real world testing in the U. S., Note 9 reached average download speeds of 43.2Mbps, while iPhones averaged 38.9Mbps, a difference that would be hard for users to notice, and nowhere near Gigabit speeds. In Canada, the two phones recorded average download speeds of 97.7Mbps and 85.4Mbps respectively, again both negligible and still more than an order of magnitude below 1 Gbps, let alone 1.2 Gbps downloads.
That makes Qualcomm’s advancement of modem technology toward even faster theoretical speeds a technically impressive but largely irrelevant marketing point. Beyond speed, there are other advantages to improved modem technology, but Qualcomm isn’t really articulating any strong selling points. And it hasn’t really needed to. Instead, it feeds nonsense marketing fluff to members of the media who are delighted to carry water for it. CNET was quick to carry water for Qualcomm
While mobile networks do indeed keep getting faster over time, network operators have historically optimized their networks to support more users, not to provide individuals anything approaching the fastest theoretical speed they can deliver.
That didn’t stop Qualcomm from also outlining that its 855 can also optionally be paired with its 5G-savvy X50 modem, again creating connectivity for networks that don’t yet exist. This isn’t a product, it’s a roadmap. But the intent is to compare what Qualcomm plans to do against what Apple is selling because Apple sells products and keeps its roadmaps largely hidden.
Recent reports have indicated Apple plans to begin shipping iPhones with 5G support in 2020, giving some flagship Androids all of next year to exclusively access 5G networks as carriers begin to build them out. That’s a lot shorter period than rivals had in the move to 4G LTE networks. And 4G was a massive boost from the status quo of 3G; today, there’s tremendous runway left in rolling out truly fast 4G networks (that today’s iPhone will be able to take advantage of) before mobile devices can make any real use of 5G technologies.
Qualcomm’s focus on its modem speeds with support for greater than 1Gbps LTE and upcoming 5G—as well as its impressive support for emerging WiFi networks with speeds (theoretically) capable of up to 10Gbps—is necessitated by the fact that it has a lot less to offer anywhere else on the Application Processor.
Apple has been killing it in CPU performance and efficiency, in its Metal-accelerated GPU graphics, in the NPU «Neural Engine» that iOS is increasingly using to power ubiquitous Machine Learning, and with its increasingly advanced Image Signal Processor used to drive computational photography. Apple beating Qualcomm in silicon is like beating Microsoft in OS platforms
It was embarrassing for Qualcomm when Apple released its 64-bit A7 back in 2013. It was just as humiliating that Apple was able to deliver its A12 Bionic as a 7nm Application Processor this fall. Qualcomm is still only just talking about its first 7nm chip as it’s readied for sale. Qualcomm has been making mobile processors long before Apple. How is it getting so outgunned?
A big part of it is that Apple can fund the development of advanced technology because it is selling over 200 million high-end phones every year. This year, Apple reached average selling prices of nearly $800. Qualcomm services a handful of high-end Androids, but these sell in far lower quantities.
All of the concerns popularized as reasons Apple might soon be in trouble—consumers balking at higher prices, a longer retention cycle on consumer phones, and fewer remaining sources of entirely new demand for smartphones—are also impacting Android makers. Samsung’s phone sales are down dramatically, with high-end models getting hit the hardest.
That’s terrible news for chipmakers like Qualcomm who specialize in building advanced technology aimed at premium devices. However, on top of all that a variety of phone makers are increasingly following Apple in investing in designing and building their own Application Processors and even their own modems.
Samsung has been building its own Exynos chips for years, and even began integrating its own modems in some models. In China, where smartphones are still growing, there’s a variety of basic competitors to Qualcomm including AllWinner and MediaTek who are eating up middle and lower tier volumes of Qualcomm’s business.

Continue reading...