Домой United States USA — software The Best Desktop Workstations for 2022

The Best Desktop Workstations for 2022

113
0
ПОДЕЛИТЬСЯ

Meet the most serious PCs on the planet: desktop workstations, certified to crunch through the most demanding design and rendering jobs and process the most intimidating datasets. Here’s what you need to know as you shop for a genuine heavyweight (even if it’s small in size).
Workstations are the sharpest tools in the desktop world, purpose-built for everything from professional photo and video editing to scientific analysis, computer-aided design (CAD), and Hollywood-level computer-generated imagery and 3D rendering. These specialized computers are available for nearly any budget, from not much more than a normal desktop to well above the sticker of a sports car. Anyone using extra-tough software (decidedly not something as simple as Microsoft Office) or looking for a highly reliable PC for intensive tasks should consider a workstation over a traditional desktop. Before you go workstation shopping, you should know they can be some of the most confusing computers to purchase because of their sheer configurability and a knack for offering options you’ve probably never heard of. The following sections delve into all aspects of the workstation world, including professional-grade graphics cards, error-correcting memory, workstation-class CPUs, and warranty considerations. Let’s dive in. How to Choose a Workstation CPU The central processing unit (CPU) is the lifeblood of any computer. This chip—or chips, as workstations can have more than one—is vitally important for complex tasks. Reference a CPU’s core and thread count (both Intel and AMD high-end processors can handle two simultaneous computing threads per core) for a basic estimation of its processing power. The least powerful CPUs you’d find in a workstation would have four cores apiece, while top-end ones can have 32 to 64 cores. Processors with higher core and thread counts are better for multitasking and especially long-running tasks like video encoding, though one with fewer cores and a higher clock speed or operating frequency (measured in gigahertz or GHz) may be more responsive for general use. (Photo: Zlata Ivleva) Today’s true workstation-CPU families are the Intel Xeon and AMD Ryzen Threadripper lines. The Threadripper has taken the market by storm by delivering more cores and threads per dollar than Xeons. Intel has responded by slashing prices, but the value edge still lies with AMD. The current Threadrippers top out at 32 cores, with, technically,64 cores possible in the rarified Threadripper 3990X that debuted in February 2020. The chips’ weak point is that they’re harder to find in workstations from major vendors such as Dell, HP, and Lenovo, where Intel remains by far the dominant choice. That may be poised to change a bit, though. In the summer of 2020, Lenovo announced an exclusive deal with AMD, in the launch of a ThinkStation model using a new line of workstation-minded Threadripper chips, the Threadripper Pro. We tested Threadripper Pro in the first Lenovo model, the ThinkStation 620 in our pick list above, and found it quite impressive. AMD has since released several Threadripper Pro chips to retail, working on a new socket and platform using the TRX80 chipset. It’s not uncommon to see Intel Core and Core X-Series, as well as AMD Ryzen chips, offered in entry-level workstations. Truth be told, workstation CPUs are based on the same essential technologies as their civilian desktop counterparts. It’s possible for a non-workstation CPU to perform just as well, if not better, assuming similar core and thread counts, though workstation CPUs scale to much higher core and thread counts. That said, there are reasons beside sheer performance to choose a workstation CPU. One of those reasons is support for error-correcting code (ECC) memory. This type of RAM automatically corrects the tiny amount of data corruption that occurs in standard or non-ECC memory. This corruption is inconsequential for everyday use, but it’s unacceptable in scientific, architectural, and financial fields where every decimal place matters. Another mark in favor of workstation CPUs is the potential for high memory ceilings. Most desktop CPUs typically support anywhere from 32GB to 64GB of memory, with top-end chips just starting to support 128GB. That may sound like a lot compared to your laptop’s 8GB or 16GB, but it’s pocket change when you consider that some workstations can support 2TB (2,048GB) of memory or more. Simply put, workstation CPUs are a necessity when extraordinary amounts of memory are required. Similarly, workstation CPUs typically support more PCI Express lanes, a useful specification if many high-speed devices (such as multiple graphics cards for GPU-based compute, and PCI Express-based solid-state storage arrays) need to be connected. Multi-CPU support is another capability that lies solely in the realm of workstation CPUs. The highest-end workstations can support two processors. It’s expensive territory that you’d probably visit only if you need an extreme number of cores (more than can fit on a single CPU) and don’t want to invest in a second computer. Ever-increasing CPU core counts have mitigated, but not eliminated, the need for what’s known as symmetric multiprocessing (SMP) scenarios. A workstation CPU is the only choice if you need the advantages described above. A non-workstation CPU will otherwise offer a better value, though some desktop workstations may not give you a choice between, say, Intel’s Xeon line and its Core family. Professional-Grade GPUs and ISV Certifications No desktop workstation would be complete without the option for a dedicated graphics processing unit (GPU) or graphics card, as opposed to the relatively humble integrated graphics built into many CPUs. The use of a GPU can vary from simple photo editing to complex CGI and parallel processing. The more graphically intense the operation, the more powerful a GPU you’ll need. Lower-end workstations may offer gaming-class Nvidia GeForce and AMD Radeon GPUs. These can run professional apps from Autodesk and Adobe, but they may not be ideally suited for the job, and that’s where the graphics vendors’ professional-grade silicon—Radeon Pro for AMD, and RTX A series (formerly Quadro) for Nvidia—come in. These cards may not appear all that different from their gaming cousins in appearance or general specifications, but the difference—and the reason for their often much higher prices—comes down to software and driver support. The drivers that accompany professional GPUs are exhaustively tested for compatibility, stability, and performance in specialized professional apps. This is where the concept of independent software vendor (ISV) certifications comes into play. Most major workstation vendors will advertise ISV certification for specific apps such as Autodesk’s AutoCAD and Maya or Dassault Systemes’ SolidWorks. The ISV certification guarantees that the workstation is optimized and will work properly for a given program. Just because a workstation doesn’t carry an ISV certification, or the certification doesn’t specify the app you’re using, doesn’t mean the app won’t work.

Continue reading...